f07 — Linear Equations (LAPACK) f07uve

NAG C Library Function Document

nag_ztprfs (f07uvc)

1 Purpose

nag_ztprfs (f07uvc) returns error bounds for the solution of a complex triangular system of linear equations
with multiple right-hand sides, AX = B, ATX =B or A"X = B, using packed storage.

2 Specification

void nag_ztprfs (Nag_OrderType order, Nag_UploType uplo, Nag_TransType trans,
Nag_DiagType diag, Integer n, Integer nrhs, const Complex ap[],
const Complex b[], Integer pdb, const Complex x[], Integer pdx, double ferr[],
double berr[], NagError *fail)

3 Description

nag_ztprfs (f07uvc) returns the backward errors and estimated bounds on the forward errors for the
solution of a complex triangular system of linear equations with multiple right-hand sides AX = B,

ATX = B or A" X = B, using packed storage. The function handles each right-hand side vector (stored
as a column of the matrix B) independently, so we describe the function of nag_ztprfs (f07uvc) in terms of
a single right-hand side b and solution .

Given a computed solution z, the function computes the component-wise backward error (3. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a
perturbed system

(A+6A)x = b+ 6b
|6a;j| < Bla;;| and |6b;| < B[by].

Then the function estimates a bound for the component-wise forward error in the computed solution,
defined by:

max |x; — Z;|/ max |z;|
1 1

where z is the true solution.

For details of the method, see the f07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters
1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: uplo — Nag_UploType Input

On entry: indicates whether A is upper or lower triangular as follows:

[NP3645/7] S07uvc. 1

f07uve NAG C Library Manual

if uplo = Nag_Upper, A is upper triangular;
if uplo = Nag_Lower, A is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: trans — Nag TransType Input
On entry: indicates the form of the equations as follows:

if trans = Nag NoTrans, the equations are of the form AX = B,
if trans = Nag_Trans, the equations are of the form A7 X = B;

if trans = Nag_ConjTrans, the equations are of the form A7 X = B.

Constraint: trans = Nag_NoTrans, Nag_Trans or Nag_ConjTrans.

4: diag — Nag DiagType Input
On entry: indicates whether A is a non-unit or unit triangular matrix as follows:
if diag = Nag NonUnitDiag, A is a non-unit triangular matrix;

if diag = Nag UnitDiag, A is a unit triangular matrix; the diagonal elements are not
referenced and are assumed to be 1.

Constraint: diag = Nag NonUnitDiag or Nag_UnitDiag.

5: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

6: nrhs — Integer Input
On entry: r, the number of right-hand sides.

Constraint: nrhs > 0.

7: ap[dim| — const Complex Input
Note: the dimension, dim, of the array ap must be at least max(l,n x (n+1)/2).

On entry: the n by n triangular matrix A, packed by rows or columns. The storage of elements a;
depends on the order and uplo parameters as follows:

if order = Nag_ColMajor and uplo = Nag_Upper,

a;; is stored in ap[(j — 1) x j/2 +4 — 1], for i < j;

if order = Nag_ColMajor and uplo = Nag_Lower,
a;; is stored in ap[(2n — j) x (j —1)/2 +1i — 1], for i > j;
if order = Nag_RowMajor and uplo = Nag_Upper,

a;; is stored in ap[(2n — i) x (i —1)/2 4 j — 1], for i < j;

if order = Nag_RowMajor and uplo = Nag Lower,
a;; is stored in ap[(i — 1) x /24 j — 1], for i > j.
8: b[dim] — const Complex Input

Note: the dimension, dim, of the array b must be at least max(1,pdb x nrhs) when
order = Nag_ColMajor and at least max(1, pdb x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix B is stored in b[(j — 1) x pdb + 4 — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(¢ — 1) x pdb + j — 1].

On entry: the n by r right-hand side matrix B.

f07uve.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07uve

9: pdb — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraints:
if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag RowMajor, pdb > max(1, nrhs).

10: x[dim] — const Complex Input
Note: the dimension, dim, of the array x must be at least max(l,pdx x nrhs) when
order = Nag_ColMajor and at least max(1,pdx x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix X is stored in x[(j — 1) x pdx + ¢ — 1] and
if order = Nag_RowMajor, the (4, j)th element of the matrix X is stored in x[(¢ — 1) x pdx + 7 — 1].
On entry: the n by r solution matrix X, as returned by nag_ztptrs (f07usc).

11: pdx — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:
if order = Nag_ColMajor, pdx > max(1,n);
if order = Nag_RowMajor, pdx > max(1, nrhs).

12: ferr[dim] — double Output
Note: the dimension, dim, of the array ferr must be at least max(1, nrhs).

On exit: ferr[j — 1] contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j=1,2,...,n

13: berr|[dim| — double Output
Note: the dimension, dim, of the array berr must be at least max (1, nrhs).

On exit: berr[j — 1] contains the component-wise backward error bound § for the jth solution
vector, that is, the jth column of X, for j=1,2,....7.

14: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT
On entry, n = (value).

Constraint: n > 0.

On entry, nrhs = (value).
Constraint: nrhs > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

On entry, pdx = (value).
Constraint: pdx > 0.

NE_INT_2

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

[NP3645/7] 07uve.3

f07uve NAG C Library Manual

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

On entry, pdx = (value), n = (value).
Constraint: pdx > max(1,n).

On entry, pdx = (value), nrhs = {value).
Constraint: pdx > max(1, nrhs).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in
practice they almost always overestimate the actual error.

8 Further Comments

A call to nag_ztprfs (f07uvc) involves, for each right-hand side, solving a number of systems of linear
equations of the form Az = b or Az = b; the number is usually 5 and never more than 11. Each solution
involves approximately 4n? real floating-point operations.

The real analogue of this function is nag_dtprfs (f07uhc).

9 Example

To solve the system of equations AX = B and to compute forward and backward error bounds, where

4.7844.56¢ 0.00+0.00¢ 0.00+ 0.00z 0.00 4 0.00¢
2.00-030: —4.11+1.25¢ 0.00+ 0.007 0.00 4 0.00¢
289 —134¢ 236—-4.25 4.15+0.80¢ 0.004 0.00¢
—1.89+1.15¢ 0.04 —3.69¢ —0.02+0.467 0.33 —0.26¢

A:

and

—14.78 —32.36t1 —18.02 4 28.46¢
298 — 2.14¢ 14.22 4 15.42¢
—20.96 + 17.061 5.62435.89 |’
9544 991¢ —16.46 — 1.73¢

B:

using packed storage for A.

9.1 Program Text

/* nag_ztprfs (f07uvc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>

f07uve.4 [NP3645/7]

f07 — Linear Equations (LAPACK) f07uve

#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)

{
/* Scalars *x/
Integer ap_len, i, j, n, nrhs;
Integer berr_len, ferr_len, pdb, pdx;
Integer exit_status=0;
Nag_UploType uplo_enum;

NagError fail;
Nag_OrderType order;

/* Arrays */

char uplo([2];

Complex *ap=0, *b=0, *x=0;
double *berr=0, *ferr=0;

#ifdef NAG_COLUMN_MAJOR
#define A_UPPER(I,J) apl[J*(J-1)/2 + I - 1]
#define A_LOWER(I,J) apl(2*n-J)*(J-1)/2 + I - 1]
#define B(I,J) b[(J-1)*pdb + I - 1]
#define X(I,J) x[(J-1)*pdx + I - 1]

order = Nag_ColMajor;
#else
#define A_LOWER(I,J) apl[I*(I-1)/2 + J - 1]
#define A_UPPER(I,J) apl[(2*n-I)*(I-1)/2 + J - 1]
#define B(I,J) b[(I-1)*pdb + J - 1]
#define X(I,J) x[(I-1)*pdx + JT - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf ("f07uvc Example Program Results\n");
/* Skip heading in data file */
Vscanf ("s*x["\n] ");
Vscanf ("%1d%1d%*["\n] ", &n, &nrhs);
berr_len = nrhs;
ferr_len = nrhs;
ap_len = n * (n + 1)/2;
#ifdef NAG_COLUMN_MAJOR

pdb = n;

pdx = n;
#else

pdb = nrhs;

pdx = nrhs;
#endif

/* Allocate memory */
if (!(ap = NAG_ALLOC(ap_len, Complex)
b = NAG_ALLOC(n * nrhs, Complex

[
1()|
! (x = NAG_ALLOC(n * nrhs, Complex)) |
! (berr = NAG_ALLOC (berr_len, double)) ||
!(ferr = NAG_ALLOC(ferr_len, double)))

)
)

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

¥

/* Read A and B from data file, and copy B to X */
Vscanf (" ' %1s ’'%*x["\n] ", uplo);

if (*(unsigned char *)uplo == 'L’)
uplo_enum = Nag_Lower;

else if (*(unsigned char #*)uplo == 'U’)
uplo_enum = Nag_Upper;

else

{

Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;

[NP3645/7] fO07uve.5

f07uve NAG C Library Manual

goto END;
}
if (uplo_enum == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (j = 1i; j <= n; ++3)
Vscanf (" (%1f , %1f)", &A_UPPER(i,j).re, &A_UPPER(i,])
¥
Vscanf ("$x[*\n] ");
}
else
{
for (1 = 1; 1 <= n; ++1)
{
for (j = 1; j <= 1i; ++3)
Vscanf (" (%1f , %1f)", &A_LOWER(i,j).re, &A_LOWER(i,]j)
¥
Vscanf ("$x[*\n] ");
}
for (i = 1; i <= n; ++1)
{
for (j = 1; j <= nrhs; ++3j)
Vscanf (" (%1f , %1f)", &B(i,j).re, &B(i,Jj).im);
}
Vscanf ("s*x["\n] ");
for (i = 1; i <= n; ++1i)
{
for (j = 1; j <= nrhs; ++3j)
{
X(i,j).re = B(i,]J).re;
X(l/j)-lm = B(llj)-lm;
}
}

/* Compute solution in the array X =*/
fO7usc(order, uplo_enum, Nag_NoTrans, Nag_NonUnitDiag, n,
nrhs, ap, x, pdx, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7usc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Compute backward errors and estimated bounds on the *x/

/* forward errors */

fO7uvc(order, uplo_enum, Nag_NoTrans, Nag_NonUnitDiag, n,
nrhs, ap, b, pdb, x, pdx, ferr, berr, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7uvc.\n%s\n", fail.message);
exit_status = 1;
goto END;
¥

/* Print solution */
Vprintf ("\n") ;
x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs,
x, pdx, Nag_BracketForm, "%7.4f", "Solution(s)"
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, O,
0, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
Vprintf ("\nBackward errors (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)
Vprintf ("$1l.1le%s", berr[j-1]1, j%4==0 2"\n":" ");
Vprintf ("\nEstimated forward error bounds "

S07uvc.6

.im) ;

.im) ;

[NP3645/7]

f07 — Linear Equations (LAPACK)

"(machine-dependent)\n") ;

for (j = 1; j <= nrhs; ++j)
Vprintf ("s1l.1less", ferr[j-1]1, j%4==0 2"\n":" ");

Vprintf ("\n")

END:

if (ap) NAG_FREE (ap);

if (b) NAG_FREE(Db);

if (x) NAG_FREE(x);

if (berr) NAG_FREE (berr);

if (ferr) NAG_FREE(ferr);

return exit_status;

¥

9.2 Program Data

fO7uvc Example Program Data
4 2
ILI
(4.78, 4.56)
(2.00,-0.30) (-4. 1.25)
(2.89,-1.34) (2. 36 —4 25) (4.15, 0.80
(-1.89, 1.15) (0.04,-3.69) (-0.02, 0.46) (0.33,-0.206)
(-14.78,-32.36) (-18.02, 28.406)
(2.98, -2.14) (14.22, 15.42)
(-20.96, 17.06) (5.62, 35.89)
(9.54, 9.91) (-le6.46, -1.73)

9.3 Program Results

fO07uvc Example Program Results
Solution(s)

1 2

1 (-5.0000,-2.0000) (1.0000, 5.0000)
2 (-3.0000,-1.0000) (-2.0000,-2.0000)
3 (2.0000, 1.0000) (3.0000, 4.0000)
4 (4.0000, 3.0000) (4. OOOO,—3.0000)

Backward errors

6.2e-17 5.5e-17
Estimated forward error bounds
2.9e-14 3.3e-14

(machine-dependent)

(machine-dependent)

f07uve

:Values of N and NRHS
:Value of UPLO

:End of matrix A

:End of matrix B

[NP3645/7]

f07uve.7 (last)

	f07uvc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	trans
	diag
	n
	nrhs
	ap
	b
	pdb
	x
	pdx
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

